If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-6x-976=0
a = 7; b = -6; c = -976;
Δ = b2-4ac
Δ = -62-4·7·(-976)
Δ = 27364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27364}=\sqrt{4*6841}=\sqrt{4}*\sqrt{6841}=2\sqrt{6841}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{6841}}{2*7}=\frac{6-2\sqrt{6841}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{6841}}{2*7}=\frac{6+2\sqrt{6841}}{14} $
| 8x+1=6x–13 | | 11/7=132/x | | 5-4m=29 | | d•12=60 | | -7=q-48/6 | | 7x^2-6x+976=0 | | 16q-14q-2q+3q-q=18 | | 7r-34=50 | | 5(3x-2)=4(2x=1) | | .66×d=1.1 | | 5.4x-1=4.4x+1 | | f-48/4=-7 | | 11-1.3x=4.6 | | h+24/9=7 | | 2/3×d=10/4 | | m2-9=0 | | 20=t/2+19 | | j+16/4=5 | | 7x2-6x-976=0 | | 2x-3=(5-x) | | -10(q-94)=-10 | | 8a-5a+4a+3a=20 | | 24=-30+3d | | 7+x-7=1 | | g+31/9=8 | | 7t+4t-4t=7 | | 6.5d-7.6=18.5 | | b/6+37=40 | | 17x+28=16x+17 | | y/9+-37=-35 | | 6s+6=8s/6*54=88988999889 | | 8-f=11f+117 |